Preliminary communication

Azole chemistry VII^{*}. The effect of metal complexation on a ring-chain tautomeric equilibrium

HOWARD ALPER, LAWRENCE S. DINKES and PATRICK J. LENNON

Department of Chemistry, State University of New York at Binghamton, Binghamton, New York 13901 (U.S.A.)

(Received June 4th, 1973)

SUMMARY

The chromium tricarbonyl group significantly affects the position of an oxazolidine-imino alcohol tautomeric equilibrium.

Dynamic ring-chain tautomerism [e.g. $Ia \Rightarrow Ib$] has been encountered in a wide variety of heterocyclic systems². Although a number of studies have been carried out in order to gain some insight as to the factors [e.g. inductive, resonance, etc.] which affect the tautomeric equilibrium², there have been no publications on the effect of metal complexation on the ring-chain process. This communication reports the first example of such an effect.

We had hoped to prepare I, $R = CH_3$, having a chromium tricarbonyl group complexed to the benzene ring. Unfortunately, only n-donor ligand complexes were isolated from the reaction of I, $R = CH_3$, with chromium hexacarbonyl in di-n-butyl ether.

The synthesis of a complexed oxazolidine, which can exist in equilibrium with its imino alcohol chain tautomer³, proved more fruitful. When an equimolar mixture of

* For Part VI, see ref. 1.

PRELIMINARY COMMUNICATION

p-tolualdehyde chromium tricarbonyl⁴ and 2-amino-2-methyl-1-propanol (in dry tetrahydrofuran) were stirred at room temperature for 6 h over 4Å molecular sieves, the yellow-orange complex II was obtained in 68% yield [Found: C, 55.21; H, 5.17; N, 4.01; Cr, 15.43. $C_{15}H_{17}NO_4Cr$ calcd.: C, 55.04; H, 5.24; N, 4.28; Cr, 15.89%]. Terminal metal

carbonyl stretching bands appeared in the infrared at 1958 and 1875 cm⁻¹ while the imine stretching vibration [of IIb] occurred at 1635 cm⁻¹. A molecular ion peak was observed in the mass spectrum at m/e 327, followed by successive loss of three carbonyls [also fragments at m/e 91(C₂H₂)⁺, 52(Cr)⁺].

The nuclear magnetic resonance spectrum [CCl₄, 5 mole %] indicated the presence of IIa and its chain isomer IIb in the ratio of 4.3/1.0. The ratio was determined by integration of the signal for the methine proton of IIb [δ 7.75], and the signals for the methine proton of IIa as well as those for the aromatic protons of IIa and IIb which all occur in the region of δ 5.04–6.10. A ratio of 1.22/1.00 was obtained for uncomplexed IIa/IIb, in reasonable accord with previously published data³. Therefore, the chromium tricarbonyl group has significantly affected the position of the tautomeric equilibrium.

A ratio of approximately 4.6/1.0 was determined for IIa/IIb containing a *p*-nitro rather than a *p*-methyl substituent, but no Cr(CO₃) group [based on the data in reference 3]. Since a methyl group is electron-donating, it is reasonable to expect a modest increase in the proportion of chain tautomer for IIa/IIb as compared to the analogous complex having hydrogen in the *para* position. Earlier work has indicated that the chromium tricarbonyl group is inductively similar to a *p*-nitro group⁵, and the same conclusion can be drawn from the results obtained herein [although resonance effects on IIb must contribute to some extent].

ACKNOWLEDGMENT

We are grateful to the Research Foundation of the State University of New York for support of this work.

REFERENCES

- 1 H. Alper and R.W. Stout, J. Heterocyclic Chem., in press.
- 2 H. Alper, E.C.H. Keung and (in part) R.A. Partis, J. Org. Chem., 36 (1971) 1352 and references cited therein.
- 3 J.V. Paukstelis and L.L. Lambing, Tetrahedron Lett., (1970) 299.
- 4 H.P. Fritz and C.G. Kreiter, J. Organometal. Chem., 7 (1967) 427.
- 5 E.g., B. Nicholls and M.C. Whiting, J. Chem. Soc., (1959) 551; G. Klopman and F. Calderazzo, Inorg. Chem., 6 (1967) 977; G. Klopman and K. Noack, Inorg. Chem., 7 (1968) 579; R.S. Bly and R.L. Veazey, J. Amer. Chem. Soc., 91 (1969) 4221; R.S. Bly, R.C. Strickland, R.T. Swindell and R.L. Veazey, J. Amer. Chem. Soc., 92 (1970) 3722; A. Ceccon and G.S. Biserni, J. Organometal. Chem., 39 (1972) 313.